5 research outputs found

    Multi-modal Image Registration

    Full text link
    In different areas, particularly medical image analysis, there is a vital need to access and analyse dynamic three dimensional (3D) images of the anatomical structures of the human body. This can enable specialists to track events as well as clinically conduct and evaluate surgical and radio therapeutical procedures. For example, measuring the 3D kinematics of knee joints in a dynamic manner is essential for understanding their normal functions and diagnosing any pathology, such as ligament injury and osteoarthritis. For evaluations of subsequent treatments, such as surgery and rehabilitation, and designs of joint replacements, having knowledge of the movements of knee joints is necessary. Image registration is increasingly being applied to medical image analysis. Whereas in mono-modal registration, the images to be registered are acquired by the same sensor, in multi-modal image registration, they can be taken from different devices or imaging protocols which makes this registration process much more challenging. The invasive or non-invasive nature of the registration method used, the computational time it requires as well as its accuracy and robustness against a large range of initial displacements are the most important features used for its evaluation. As currently available approaches have limited capabilities to register images with large initial displacements and are either not sufficiently accurate or very computationally expensive, the objective of this research is to propose new registration methods, that provide dynamic 3D images, to address these issues. In the first part of this study, I conducted research on registering an individuals’ natural knee bones that can provide 3D information of knee joint kinematics which can be very helpful for improving the accuracy of diagnosis and enabling targeted treatments. A fast, accurate and robust hybrid rigid body registration method based on two different multi-modal similarity measures, the edge position difference (EPD) and sum-of-conditional variance (SCV), is proposed. It uses a gradient descent optimisation technique to register multi-modal images and determine the best transformation parameters. It helps to achieve a trade-off among different challenges, including time complexity, accuracy and robustness against a large range of initial displacements. To evaluate it, several experiments were performed on two different databases: one collected from the knee bones of four patients and the other from three knee cadavers installed on a mechanical positioning system, with the results showing that this method is accurate, fast and robust against large initial displacement. Then, I conducted research on registering implanted human knee joints and proposed a non-invasive, robust 3D-to-2D registration method which can be used for 3D evaluations of the status of knee implants after joint replacement surgeries. In this method, 3D models of the implants for an individual with the relevant post-operative fluoroscopy frames are able to be used in the registration process. As a result, it is possible to perform 3D analysis at any time after a surgery by simply taking single-plane radiographs. This approach uses the EPD multi-modal similarity measure together with a steepest descent optimisation method. It applies coarse-to-fine registration steps to determine the transformation parameters that lead to the best alignment between the model used and X-ray images to be registered. The experimental results showed that not only does the proposed registration method have a high success rate but that it is also much faster than the most relevant competitive approach. Although the experiments were designed for a 3D analysis of total knee arthroplasty (TKA) components, this proposed method can be applied to other joints such as the ankle or hip. In the final part of my research, I developed a multi-frame 2D fluoroscopy to 3D model registration method for measuring the kinematics of post-operative knee joints. It uses a coarse-to-fine approach and applies the normalised EPD (NEPD) and SCV similarity measures together with a gradient descent optimisation method and an interpolation estimation one. In order to measure the kinematics of post- operative knee joints, after a TKA surgery, a 3D knee implant model can be registered with a number of single-plane fluoroscopy frames of the patient’s knee. Generally, when this number is quite high, the computational cost for registering the frames and a 3D model is expensive. Therefore, in order to speed up the registration process, a cubic spline interpolation prediction method is applied to initialise and estimate the 3D positions of the 3D model in each fluoroscopy frame instead of applying a registration algorithm on all the frames, one after the other. The estimated 3D positions are then tuned using a registration improvement step. The experimental results demonstrated that the proposed registration method is much faster than the best existing one and achieves almost the same accuracy. It also provides smooth registration results which can lead to more natural 3D modelling of joint movements

    An efficient hybrid method for 3D to 2D medical image registration

    Get PDF
    PURPOSE: The purpose of this paper is to present a method for registration of 3D computed tomography to 2D single-plane fluoroscopy knee images to provide 3D motion information for knee joints. This 3D kinematic information has unique utility for examining joint kinematics in conditions such as ligament injury, osteoarthritis and after joint replacement. METHODS: We proposed a non-invasive rigid body image registration method which is based on two different multimodal similarity measures. This hybrid registration method helps to achieve a trade-off among different challenges including, time complexity and accuracy. RESULTS: We performed a number of experiments to evaluate the performance of the proposed method. The experimental results show that the proposed method is as accurate as one of the most recent registration methods while it is several times faster than that method. CONCLUSION: The proposed method is a non-invasive, fast and accurate registration method, which can provide 3D information for knee joint kinematic measurements. This information can be very helpful in improving the accuracy of diagnosis and providing targeted treatment
    corecore